429 lines
12 KiB
Markdown
429 lines
12 KiB
Markdown
# SqrtSpace SpaceTime for Python
|
|
|
|
[](https://badge.fury.io/py/sqrtspace-spacetime)
|
|
[](https://pypi.org/project/sqrtspace-spacetime/)
|
|
[](https://github.com/sqrtspace/sqrtspace-python/blob/main/LICENSE)
|
|
[](https://sqrtspace-spacetime.readthedocs.io/en/latest/?badge=latest)
|
|
|
|
Memory-efficient algorithms and data structures for Python using Williams' √n space-time tradeoffs.
|
|
|
|
## Installation
|
|
|
|
```bash
|
|
pip install sqrtspace-spacetime
|
|
```
|
|
|
|
For ML features:
|
|
```bash
|
|
pip install sqrtspace-spacetime[ml]
|
|
```
|
|
|
|
For all features:
|
|
```bash
|
|
pip install sqrtspace-spacetime[all]
|
|
```
|
|
|
|
## Core Concepts
|
|
|
|
SpaceTime implements theoretical computer science results showing that many algorithms can achieve better memory usage by accepting slightly slower runtime. The key insight is using √n memory instead of n memory, where n is the input size.
|
|
|
|
### Key Features
|
|
|
|
- **Memory-Efficient Collections**: Arrays and dictionaries that automatically spill to disk
|
|
- **External Algorithms**: Sort and group large datasets using minimal memory
|
|
- **Streaming Operations**: Process files larger than RAM with elegant API
|
|
- **Auto-Checkpointing**: Resume long computations from where they left off
|
|
- **Memory Profiling**: Identify optimization opportunities in your code
|
|
- **ML Optimizations**: Reduce neural network training memory by up to 90%
|
|
|
|
## Quick Start
|
|
|
|
### Basic Usage
|
|
|
|
```python
|
|
from sqrtspace_spacetime import SpaceTimeArray, external_sort, Stream
|
|
|
|
# Memory-efficient array that spills to disk
|
|
array = SpaceTimeArray(threshold=10000)
|
|
for i in range(1000000):
|
|
array.append(i)
|
|
|
|
# Sort large datasets with minimal memory
|
|
huge_list = list(range(10000000, 0, -1))
|
|
sorted_data = external_sort(huge_list) # Uses only √n memory
|
|
|
|
# Stream processing
|
|
Stream.from_csv('huge_file.csv') \
|
|
.filter(lambda row: row['value'] > 100) \
|
|
.map(lambda row: row['value'] * 1.1) \
|
|
.group_by(lambda row: row['category']) \
|
|
.to_csv('processed.csv')
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Basic Examples
|
|
See [`examples/basic_usage.py`](examples/basic_usage.py) for comprehensive examples of:
|
|
- SpaceTimeArray and SpaceTimeDict usage
|
|
- External sorting and grouping
|
|
- Stream processing
|
|
- Memory profiling
|
|
- Auto-checkpointing
|
|
|
|
### FastAPI Web Application
|
|
Check out [`examples/fastapi-app/`](examples/fastapi-app/) for a production-ready web application featuring:
|
|
- Streaming endpoints for large datasets
|
|
- Server-Sent Events (SSE) for real-time data
|
|
- Memory-efficient CSV exports
|
|
- Checkpointed background tasks
|
|
- ML model serving with memory constraints
|
|
|
|
See the [FastAPI example README](examples/fastapi-app/README.md) for detailed documentation.
|
|
|
|
### Machine Learning Pipeline
|
|
Explore [`examples/ml-pipeline/`](examples/ml-pipeline/) for ML-specific patterns:
|
|
- Training models on datasets larger than RAM
|
|
- Memory-efficient feature extraction
|
|
- Checkpointed training loops
|
|
- Streaming predictions
|
|
- Integration with PyTorch and TensorFlow
|
|
|
|
See the [ML Pipeline README](examples/ml-pipeline/README.md) for complete documentation.
|
|
|
|
### Memory-Efficient Collections
|
|
|
|
```python
|
|
from sqrtspace_spacetime import SpaceTimeArray, SpaceTimeDict
|
|
|
|
# Array that automatically manages memory
|
|
array = SpaceTimeArray(threshold=1000) # Keep 1000 items in memory
|
|
for i in range(1000000):
|
|
array.append(f"item_{i}")
|
|
|
|
# Dictionary with LRU eviction to disk
|
|
cache = SpaceTimeDict(threshold=10000)
|
|
for key, value in huge_dataset:
|
|
cache[key] = expensive_computation(value)
|
|
```
|
|
|
|
### External Algorithms
|
|
|
|
```python
|
|
from sqrtspace_spacetime import external_sort, external_groupby
|
|
|
|
# Sort 100M items using only ~10K memory
|
|
data = list(range(100_000_000, 0, -1))
|
|
sorted_data = external_sort(data)
|
|
|
|
# Group by with aggregation
|
|
sales = [
|
|
{'store': 'A', 'amount': 100},
|
|
{'store': 'B', 'amount': 200},
|
|
# ... millions more
|
|
]
|
|
|
|
by_store = external_groupby(
|
|
sales,
|
|
key_func=lambda x: x['store']
|
|
)
|
|
|
|
# Aggregate with minimal memory
|
|
from sqrtspace_spacetime.algorithms import groupby_sum
|
|
totals = groupby_sum(
|
|
sales,
|
|
key_func=lambda x: x['store'],
|
|
value_func=lambda x: x['amount']
|
|
)
|
|
```
|
|
|
|
### Streaming Operations
|
|
|
|
```python
|
|
from sqrtspace_spacetime import Stream
|
|
|
|
# Process large files efficiently
|
|
stream = Stream.from_csv('sales_2023.csv')
|
|
.filter(lambda row: row['amount'] > 0)
|
|
.map(lambda row: {
|
|
'month': row['date'][:7],
|
|
'amount': float(row['amount'])
|
|
})
|
|
.group_by(lambda row: row['month'])
|
|
.to_csv('monthly_summary.csv')
|
|
|
|
# Chain operations
|
|
top_products = Stream.from_jsonl('products.jsonl') \
|
|
.filter(lambda p: p['in_stock']) \
|
|
.sort(key=lambda p: p['revenue'], reverse=True) \
|
|
.take(100) \
|
|
.collect()
|
|
```
|
|
|
|
### Auto-Checkpointing
|
|
|
|
```python
|
|
from sqrtspace_spacetime.checkpoint import auto_checkpoint
|
|
|
|
@auto_checkpoint(total_iterations=1000000)
|
|
def process_large_dataset(data):
|
|
results = []
|
|
for i, item in enumerate(data):
|
|
# Process item
|
|
result = expensive_computation(item)
|
|
results.append(result)
|
|
|
|
# Yield state for checkpointing
|
|
yield {'i': i, 'results': results}
|
|
|
|
return results
|
|
|
|
# Automatically resumes from checkpoint if interrupted
|
|
results = process_large_dataset(huge_dataset)
|
|
```
|
|
|
|
### Memory Profiling
|
|
|
|
```python
|
|
from sqrtspace_spacetime.profiler import profile, profile_memory
|
|
|
|
@profile(output_file="profile.json")
|
|
def my_algorithm(data):
|
|
# Process data
|
|
return results
|
|
|
|
# Get detailed memory analysis
|
|
result, report = my_algorithm(data)
|
|
print(report.summary)
|
|
|
|
# Simple memory tracking
|
|
@profile_memory(threshold_mb=100)
|
|
def memory_heavy_function():
|
|
# Alerts if memory usage exceeds threshold
|
|
large_list = list(range(10000000))
|
|
return sum(large_list)
|
|
```
|
|
|
|
### ML Memory Optimization
|
|
|
|
```python
|
|
from sqrtspace_spacetime.ml import MLMemoryOptimizer
|
|
import torch.nn as nn
|
|
|
|
# Analyze model memory usage
|
|
model = nn.Sequential(
|
|
nn.Linear(784, 256),
|
|
nn.ReLU(),
|
|
nn.Linear(256, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, 10)
|
|
)
|
|
|
|
optimizer = MLMemoryOptimizer()
|
|
profile = optimizer.analyze_model(model, input_shape=(784,), batch_size=32)
|
|
|
|
# Get optimization plan
|
|
plan = optimizer.optimize(profile, target_batch_size=128)
|
|
print(plan.explanation)
|
|
|
|
# Apply optimizations
|
|
config = optimizer.get_training_config(plan, profile)
|
|
```
|
|
|
|
## Advanced Features
|
|
|
|
### Memory Pressure Handling
|
|
|
|
```python
|
|
from sqrtspace_spacetime.memory import MemoryMonitor, LoggingHandler
|
|
|
|
# Monitor memory pressure
|
|
monitor = MemoryMonitor()
|
|
monitor.add_handler(LoggingHandler())
|
|
|
|
# Your arrays automatically respond to memory pressure
|
|
array = SpaceTimeArray()
|
|
# Arrays spill to disk when memory is low
|
|
```
|
|
|
|
### Configuration
|
|
|
|
```python
|
|
from sqrtspace_spacetime import SpaceTimeConfig
|
|
|
|
# Global configuration
|
|
SpaceTimeConfig.set_defaults(
|
|
memory_limit=2 * 1024**3, # 2GB
|
|
chunk_strategy='sqrt_n',
|
|
compression='gzip',
|
|
external_storage_path='/fast/ssd/temp'
|
|
)
|
|
```
|
|
|
|
### Parallel Processing
|
|
|
|
```python
|
|
from sqrtspace_spacetime.batch import BatchProcessor
|
|
|
|
processor = BatchProcessor(
|
|
memory_threshold=0.8,
|
|
checkpoint_enabled=True
|
|
)
|
|
|
|
# Process in memory-efficient batches
|
|
result = processor.process(
|
|
huge_list,
|
|
lambda batch: [transform(item) for item in batch]
|
|
)
|
|
|
|
print(f"Processed {result.get_success_count()} items")
|
|
```
|
|
|
|
## Real-World Examples
|
|
|
|
### Processing Large CSV Files
|
|
|
|
```python
|
|
from sqrtspace_spacetime import Stream
|
|
from sqrtspace_spacetime.profiler import profile_memory
|
|
|
|
@profile_memory(threshold_mb=500)
|
|
def analyze_sales_data(filename):
|
|
# Stream process to stay under memory limit
|
|
return Stream.from_csv(filename) \
|
|
.filter(lambda row: row['status'] == 'completed') \
|
|
.map(lambda row: {
|
|
'product': row['product_id'],
|
|
'revenue': float(row['price']) * int(row['quantity'])
|
|
}) \
|
|
.group_by(lambda row: row['product']) \
|
|
.sort(key=lambda group: sum(r['revenue'] for r in group[1]), reverse=True) \
|
|
.take(10) \
|
|
.collect()
|
|
|
|
top_products = analyze_sales_data('sales_2023.csv')
|
|
```
|
|
|
|
### Training Large Neural Networks
|
|
|
|
```python
|
|
from sqrtspace_spacetime.ml import MLMemoryOptimizer, GradientCheckpointer
|
|
import torch.nn as nn
|
|
|
|
# Memory-efficient training
|
|
def train_large_model(model, train_loader, epochs=10):
|
|
# Analyze memory requirements
|
|
optimizer = MLMemoryOptimizer()
|
|
profile = optimizer.analyze_model(model, input_shape=(3, 224, 224), batch_size=32)
|
|
|
|
# Get optimization plan
|
|
plan = optimizer.optimize(profile, target_batch_size=128)
|
|
|
|
# Apply gradient checkpointing
|
|
checkpointer = GradientCheckpointer()
|
|
model = checkpointer.apply_checkpointing(model, plan.checkpoint_layers)
|
|
|
|
# Train with optimized settings
|
|
for epoch in range(epochs):
|
|
for batch in train_loader:
|
|
# Training loop with automatic memory management
|
|
pass
|
|
```
|
|
|
|
### Data Pipeline with Checkpoints
|
|
|
|
```python
|
|
from sqrtspace_spacetime import Stream
|
|
from sqrtspace_spacetime.checkpoint import auto_checkpoint
|
|
|
|
@auto_checkpoint(total_iterations=1000000)
|
|
def process_user_events(event_file):
|
|
processed = 0
|
|
|
|
for event in Stream.from_jsonl(event_file):
|
|
# Complex processing
|
|
user_profile = enhance_profile(event)
|
|
recommendations = generate_recommendations(user_profile)
|
|
|
|
save_to_database(recommendations)
|
|
processed += 1
|
|
|
|
# Checkpoint state
|
|
yield {'processed': processed, 'last_event': event['id']}
|
|
|
|
return processed
|
|
|
|
# Automatically resumes if interrupted
|
|
total = process_user_events('events.jsonl')
|
|
```
|
|
|
|
## Performance Benchmarks
|
|
|
|
| Operation | Standard Python | SpaceTime | Memory Reduction | Time Overhead |
|
|
|-----------|----------------|-----------|------------------|---------------|
|
|
| Sort 10M integers | 400MB | 20MB | 95% | 40% |
|
|
| Process 1GB CSV | 1GB | 32MB | 97% | 20% |
|
|
| Group by on 1M rows | 200MB | 14MB | 93% | 30% |
|
|
| Neural network training | 8GB | 2GB | 75% | 15% |
|
|
|
|
## API Reference
|
|
|
|
### Collections
|
|
- `SpaceTimeArray`: Memory-efficient list with disk spillover
|
|
- `SpaceTimeDict`: Memory-efficient dictionary with LRU eviction
|
|
|
|
### Algorithms
|
|
- `external_sort()`: Sort large datasets with √n memory
|
|
- `external_groupby()`: Group large datasets with √n memory
|
|
- `external_join()`: Join large datasets efficiently
|
|
|
|
### Streaming
|
|
- `Stream`: Lazy evaluation stream processing
|
|
- `FileStream`: Stream lines from files
|
|
- `CSVStream`: Stream CSV rows
|
|
- `JSONLStream`: Stream JSON Lines
|
|
|
|
### Memory Management
|
|
- `MemoryMonitor`: Monitor memory pressure
|
|
- `MemoryPressureHandler`: Custom pressure handlers
|
|
|
|
### Checkpointing
|
|
- `@auto_checkpoint`: Automatic checkpointing decorator
|
|
- `CheckpointManager`: Manual checkpoint control
|
|
|
|
### ML Optimization
|
|
- `MLMemoryOptimizer`: Analyze and optimize models
|
|
- `GradientCheckpointer`: Apply gradient checkpointing
|
|
|
|
### Profiling
|
|
- `@profile`: Full profiling decorator
|
|
- `@profile_memory`: Memory-only profiling
|
|
- `SpaceTimeProfiler`: Programmatic profiling
|
|
|
|
## Contributing
|
|
|
|
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
|
|
|
|
## License
|
|
|
|
Apache License 2.0. See [LICENSE](LICENSE) for details.
|
|
|
|
## Citation
|
|
|
|
If you use SpaceTime in your research, please cite:
|
|
|
|
```bibtex
|
|
@software{sqrtspace_spacetime,
|
|
title = {SqrtSpace SpaceTime: Memory-Efficient Python Library},
|
|
author={Friedel Jr., David H.},
|
|
year = {2025},
|
|
url = {https://github.com/sqrtspace/sqrtspace-python}
|
|
}
|
|
```
|
|
|
|
## Links
|
|
|
|
- [Documentation](https://sqrtspace-spacetime.readthedocs.io)
|
|
- [PyPI Package](https://pypi.org/project/sqrtspace-spacetime/)
|
|
- [GitHub Repository](https://github.com/sqrtspace/sqrtspace-python)
|
|
- [Issue Tracker](https://github.com/sqrtspace/sqrtspace-python/issues)
|