| .github/workflows | ||
| examples | ||
| src/sqrtspace_spacetime | ||
| tests | ||
| .gitignore | ||
| LICENSE | ||
| pyproject.toml | ||
| README.md | ||
| requirements-dev.txt | ||
| requirements.txt | ||
| setup.py | ||
SqrtSpace SpaceTime for Python
Memory-efficient algorithms and data structures for Python using Williams' √n space-time tradeoffs.
Paper Repository: github.com/sqrtspace/sqrtspace-paper
Installation
pip install sqrtspace-spacetime
For ML features:
pip install sqrtspace-spacetime[ml]
For all features:
pip install sqrtspace-spacetime[all]
Core Concepts
SpaceTime implements theoretical computer science results showing that many algorithms can achieve better memory usage by accepting slightly slower runtime. The key insight is using √n memory instead of n memory, where n is the input size.
Key Features
- Memory-Efficient Collections: Arrays and dictionaries that automatically spill to disk
- External Algorithms: Sort and group large datasets using minimal memory
- Streaming Operations: Process files larger than RAM with elegant API
- Auto-Checkpointing: Resume long computations from where they left off
- Memory Profiling: Identify optimization opportunities in your code
- ML Optimizations: Reduce neural network training memory by up to 90%
Quick Start
Basic Usage
from sqrtspace_spacetime import SpaceTimeArray, external_sort, Stream
# Memory-efficient array that spills to disk
array = SpaceTimeArray(threshold=10000)
for i in range(1000000):
array.append(i)
# Sort large datasets with minimal memory
huge_list = list(range(10000000, 0, -1))
sorted_data = external_sort(huge_list) # Uses only √n memory
# Stream processing
Stream.from_csv('huge_file.csv') \
.filter(lambda row: row['value'] > 100) \
.map(lambda row: row['value'] * 1.1) \
.group_by(lambda row: row['category']) \
.to_csv('processed.csv')
Examples
Basic Examples
See examples/basic_usage.py for comprehensive examples of:
- SpaceTimeArray and SpaceTimeDict usage
- External sorting and grouping
- Stream processing
- Memory profiling
- Auto-checkpointing
FastAPI Web Application
Check out examples/fastapi-app/ for a production-ready web application featuring:
- Streaming endpoints for large datasets
- Server-Sent Events (SSE) for real-time data
- Memory-efficient CSV exports
- Checkpointed background tasks
- ML model serving with memory constraints
See the FastAPI example README for detailed documentation.
Machine Learning Pipeline
Explore examples/ml-pipeline/ for ML-specific patterns:
- Training models on datasets larger than RAM
- Memory-efficient feature extraction
- Checkpointed training loops
- Streaming predictions
- Integration with PyTorch and TensorFlow
See the ML Pipeline README for complete documentation.
Memory-Efficient Collections
from sqrtspace_spacetime import SpaceTimeArray, SpaceTimeDict
# Array that automatically manages memory
array = SpaceTimeArray(threshold=1000) # Keep 1000 items in memory
for i in range(1000000):
array.append(f"item_{i}")
# Dictionary with LRU eviction to disk
cache = SpaceTimeDict(threshold=10000)
for key, value in huge_dataset:
cache[key] = expensive_computation(value)
External Algorithms
from sqrtspace_spacetime import external_sort, external_groupby
# Sort 100M items using only ~10K memory
data = list(range(100_000_000, 0, -1))
sorted_data = external_sort(data)
# Group by with aggregation
sales = [
{'store': 'A', 'amount': 100},
{'store': 'B', 'amount': 200},
# ... millions more
]
by_store = external_groupby(
sales,
key_func=lambda x: x['store']
)
# Aggregate with minimal memory
from sqrtspace_spacetime.algorithms import groupby_sum
totals = groupby_sum(
sales,
key_func=lambda x: x['store'],
value_func=lambda x: x['amount']
)
Streaming Operations
from sqrtspace_spacetime import Stream
# Process large files efficiently
stream = Stream.from_csv('sales_2023.csv')
.filter(lambda row: row['amount'] > 0)
.map(lambda row: {
'month': row['date'][:7],
'amount': float(row['amount'])
})
.group_by(lambda row: row['month'])
.to_csv('monthly_summary.csv')
# Chain operations
top_products = Stream.from_jsonl('products.jsonl') \
.filter(lambda p: p['in_stock']) \
.sort(key=lambda p: p['revenue'], reverse=True) \
.take(100) \
.collect()
Auto-Checkpointing
from sqrtspace_spacetime.checkpoint import auto_checkpoint
@auto_checkpoint(total_iterations=1000000)
def process_large_dataset(data):
results = []
for i, item in enumerate(data):
# Process item
result = expensive_computation(item)
results.append(result)
# Yield state for checkpointing
yield {'i': i, 'results': results}
return results
# Automatically resumes from checkpoint if interrupted
results = process_large_dataset(huge_dataset)
Memory Profiling
from sqrtspace_spacetime.profiler import profile, profile_memory
@profile(output_file="profile.json")
def my_algorithm(data):
# Process data
return results
# Get detailed memory analysis
result, report = my_algorithm(data)
print(report.summary)
# Simple memory tracking
@profile_memory(threshold_mb=100)
def memory_heavy_function():
# Alerts if memory usage exceeds threshold
large_list = list(range(10000000))
return sum(large_list)
ML Memory Optimization
from sqrtspace_spacetime.ml import MLMemoryOptimizer
import torch.nn as nn
# Analyze model memory usage
model = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
optimizer = MLMemoryOptimizer()
profile = optimizer.analyze_model(model, input_shape=(784,), batch_size=32)
# Get optimization plan
plan = optimizer.optimize(profile, target_batch_size=128)
print(plan.explanation)
# Apply optimizations
config = optimizer.get_training_config(plan, profile)
Advanced Features
Memory Pressure Handling
from sqrtspace_spacetime.memory import MemoryMonitor, LoggingHandler
# Monitor memory pressure
monitor = MemoryMonitor()
monitor.add_handler(LoggingHandler())
# Your arrays automatically respond to memory pressure
array = SpaceTimeArray()
# Arrays spill to disk when memory is low
Configuration
from sqrtspace_spacetime import SpaceTimeConfig
# Global configuration
SpaceTimeConfig.set_defaults(
memory_limit=2 * 1024**3, # 2GB
chunk_strategy='sqrt_n',
compression='gzip',
external_storage_path='/fast/ssd/temp'
)
Parallel Processing
from sqrtspace_spacetime.batch import BatchProcessor
processor = BatchProcessor(
memory_threshold=0.8,
checkpoint_enabled=True
)
# Process in memory-efficient batches
result = processor.process(
huge_list,
lambda batch: [transform(item) for item in batch]
)
print(f"Processed {result.get_success_count()} items")
Real-World Examples
Processing Large CSV Files
from sqrtspace_spacetime import Stream
from sqrtspace_spacetime.profiler import profile_memory
@profile_memory(threshold_mb=500)
def analyze_sales_data(filename):
# Stream process to stay under memory limit
return Stream.from_csv(filename) \
.filter(lambda row: row['status'] == 'completed') \
.map(lambda row: {
'product': row['product_id'],
'revenue': float(row['price']) * int(row['quantity'])
}) \
.group_by(lambda row: row['product']) \
.sort(key=lambda group: sum(r['revenue'] for r in group[1]), reverse=True) \
.take(10) \
.collect()
top_products = analyze_sales_data('sales_2023.csv')
Training Large Neural Networks
from sqrtspace_spacetime.ml import MLMemoryOptimizer, GradientCheckpointer
import torch.nn as nn
# Memory-efficient training
def train_large_model(model, train_loader, epochs=10):
# Analyze memory requirements
optimizer = MLMemoryOptimizer()
profile = optimizer.analyze_model(model, input_shape=(3, 224, 224), batch_size=32)
# Get optimization plan
plan = optimizer.optimize(profile, target_batch_size=128)
# Apply gradient checkpointing
checkpointer = GradientCheckpointer()
model = checkpointer.apply_checkpointing(model, plan.checkpoint_layers)
# Train with optimized settings
for epoch in range(epochs):
for batch in train_loader:
# Training loop with automatic memory management
pass
Data Pipeline with Checkpoints
from sqrtspace_spacetime import Stream
from sqrtspace_spacetime.checkpoint import auto_checkpoint
@auto_checkpoint(total_iterations=1000000)
def process_user_events(event_file):
processed = 0
for event in Stream.from_jsonl(event_file):
# Complex processing
user_profile = enhance_profile(event)
recommendations = generate_recommendations(user_profile)
save_to_database(recommendations)
processed += 1
# Checkpoint state
yield {'processed': processed, 'last_event': event['id']}
return processed
# Automatically resumes if interrupted
total = process_user_events('events.jsonl')
Performance Benchmarks
| Operation | Standard Python | SpaceTime | Memory Reduction | Time Overhead |
|---|---|---|---|---|
| Sort 10M integers | 400MB | 20MB | 95% | 40% |
| Process 1GB CSV | 1GB | 32MB | 97% | 20% |
| Group by on 1M rows | 200MB | 14MB | 93% | 30% |
| Neural network training | 8GB | 2GB | 75% | 15% |
API Reference
Collections
SpaceTimeArray: Memory-efficient list with disk spilloverSpaceTimeDict: Memory-efficient dictionary with LRU eviction
Algorithms
external_sort(): Sort large datasets with √n memoryexternal_groupby(): Group large datasets with √n memoryexternal_join(): Join large datasets efficiently
Streaming
Stream: Lazy evaluation stream processingFileStream: Stream lines from filesCSVStream: Stream CSV rowsJSONLStream: Stream JSON Lines
Memory Management
MemoryMonitor: Monitor memory pressureMemoryPressureHandler: Custom pressure handlers
Checkpointing
@auto_checkpoint: Automatic checkpointing decoratorCheckpointManager: Manual checkpoint control
ML Optimization
MLMemoryOptimizer: Analyze and optimize modelsGradientCheckpointer: Apply gradient checkpointing
Profiling
@profile: Full profiling decorator@profile_memory: Memory-only profilingSpaceTimeProfiler: Programmatic profiling
Contributing
We welcome contributions! Please see our Contributing Guide for details.
License
Apache License 2.0. See LICENSE for details.
Citation
If you use SpaceTime in your research, please cite:
@software{sqrtspace_spacetime,
title = {SqrtSpace SpaceTime: Memory-Efficient Python Library},
author={Friedel Jr., David H.},
year = {2025},
url = {https://git.marketally.com/sqrtspace/sqrtspace-python}
}