sqrtspace-python/README.md
2025-12-28 17:31:26 +00:00

431 lines
12 KiB
Markdown

# SqrtSpace SpaceTime for Python
[![PyPI version](https://badge.fury.io/py/sqrtspace-spacetime.svg)](https://badge.fury.io/py/sqrtspace-spacetime)
[![Python Versions](https://img.shields.io/pypi/pyversions/sqrtspace-spacetime.svg)](https://pypi.org/project/sqrtspace-spacetime/)
[![License](https://img.shields.io/pypi/l/sqrtspace-spacetime.svg)](https://git.marketally.com/sqrtspace/sqrtspace-python/src/branch/main/LICENSE)
[![Documentation Status](https://readthedocs.org/projects/sqrtspace-spacetime/badge/?version=latest)](https://sqrtspace-spacetime.readthedocs.io/en/latest/?badge=latest)
Memory-efficient algorithms and data structures for Python using Williams' √n space-time tradeoffs.
**Paper Repository**: [github.com/sqrtspace/sqrtspace-paper](https://github.com/sqrtspace/sqrtspace-paper)
## Installation
```bash
pip install sqrtspace-spacetime
```
For ML features:
```bash
pip install sqrtspace-spacetime[ml]
```
For all features:
```bash
pip install sqrtspace-spacetime[all]
```
## Core Concepts
SpaceTime implements theoretical computer science results showing that many algorithms can achieve better memory usage by accepting slightly slower runtime. The key insight is using √n memory instead of n memory, where n is the input size.
### Key Features
- **Memory-Efficient Collections**: Arrays and dictionaries that automatically spill to disk
- **External Algorithms**: Sort and group large datasets using minimal memory
- **Streaming Operations**: Process files larger than RAM with elegant API
- **Auto-Checkpointing**: Resume long computations from where they left off
- **Memory Profiling**: Identify optimization opportunities in your code
- **ML Optimizations**: Reduce neural network training memory by up to 90%
## Quick Start
### Basic Usage
```python
from sqrtspace_spacetime import SpaceTimeArray, external_sort, Stream
# Memory-efficient array that spills to disk
array = SpaceTimeArray(threshold=10000)
for i in range(1000000):
array.append(i)
# Sort large datasets with minimal memory
huge_list = list(range(10000000, 0, -1))
sorted_data = external_sort(huge_list) # Uses only √n memory
# Stream processing
Stream.from_csv('huge_file.csv') \
.filter(lambda row: row['value'] > 100) \
.map(lambda row: row['value'] * 1.1) \
.group_by(lambda row: row['category']) \
.to_csv('processed.csv')
```
## Examples
### Basic Examples
See [`examples/basic_usage.py`](examples/basic_usage.py) for comprehensive examples of:
- SpaceTimeArray and SpaceTimeDict usage
- External sorting and grouping
- Stream processing
- Memory profiling
- Auto-checkpointing
### FastAPI Web Application
Check out [`examples/fastapi-app/`](examples/fastapi-app/) for a production-ready web application featuring:
- Streaming endpoints for large datasets
- Server-Sent Events (SSE) for real-time data
- Memory-efficient CSV exports
- Checkpointed background tasks
- ML model serving with memory constraints
See the [FastAPI example README](examples/fastapi-app/README.md) for detailed documentation.
### Machine Learning Pipeline
Explore [`examples/ml-pipeline/`](examples/ml-pipeline/) for ML-specific patterns:
- Training models on datasets larger than RAM
- Memory-efficient feature extraction
- Checkpointed training loops
- Streaming predictions
- Integration with PyTorch and TensorFlow
See the [ML Pipeline README](examples/ml-pipeline/README.md) for complete documentation.
### Memory-Efficient Collections
```python
from sqrtspace_spacetime import SpaceTimeArray, SpaceTimeDict
# Array that automatically manages memory
array = SpaceTimeArray(threshold=1000) # Keep 1000 items in memory
for i in range(1000000):
array.append(f"item_{i}")
# Dictionary with LRU eviction to disk
cache = SpaceTimeDict(threshold=10000)
for key, value in huge_dataset:
cache[key] = expensive_computation(value)
```
### External Algorithms
```python
from sqrtspace_spacetime import external_sort, external_groupby
# Sort 100M items using only ~10K memory
data = list(range(100_000_000, 0, -1))
sorted_data = external_sort(data)
# Group by with aggregation
sales = [
{'store': 'A', 'amount': 100},
{'store': 'B', 'amount': 200},
# ... millions more
]
by_store = external_groupby(
sales,
key_func=lambda x: x['store']
)
# Aggregate with minimal memory
from sqrtspace_spacetime.algorithms import groupby_sum
totals = groupby_sum(
sales,
key_func=lambda x: x['store'],
value_func=lambda x: x['amount']
)
```
### Streaming Operations
```python
from sqrtspace_spacetime import Stream
# Process large files efficiently
stream = Stream.from_csv('sales_2023.csv')
.filter(lambda row: row['amount'] > 0)
.map(lambda row: {
'month': row['date'][:7],
'amount': float(row['amount'])
})
.group_by(lambda row: row['month'])
.to_csv('monthly_summary.csv')
# Chain operations
top_products = Stream.from_jsonl('products.jsonl') \
.filter(lambda p: p['in_stock']) \
.sort(key=lambda p: p['revenue'], reverse=True) \
.take(100) \
.collect()
```
### Auto-Checkpointing
```python
from sqrtspace_spacetime.checkpoint import auto_checkpoint
@auto_checkpoint(total_iterations=1000000)
def process_large_dataset(data):
results = []
for i, item in enumerate(data):
# Process item
result = expensive_computation(item)
results.append(result)
# Yield state for checkpointing
yield {'i': i, 'results': results}
return results
# Automatically resumes from checkpoint if interrupted
results = process_large_dataset(huge_dataset)
```
### Memory Profiling
```python
from sqrtspace_spacetime.profiler import profile, profile_memory
@profile(output_file="profile.json")
def my_algorithm(data):
# Process data
return results
# Get detailed memory analysis
result, report = my_algorithm(data)
print(report.summary)
# Simple memory tracking
@profile_memory(threshold_mb=100)
def memory_heavy_function():
# Alerts if memory usage exceeds threshold
large_list = list(range(10000000))
return sum(large_list)
```
### ML Memory Optimization
```python
from sqrtspace_spacetime.ml import MLMemoryOptimizer
import torch.nn as nn
# Analyze model memory usage
model = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
optimizer = MLMemoryOptimizer()
profile = optimizer.analyze_model(model, input_shape=(784,), batch_size=32)
# Get optimization plan
plan = optimizer.optimize(profile, target_batch_size=128)
print(plan.explanation)
# Apply optimizations
config = optimizer.get_training_config(plan, profile)
```
## Advanced Features
### Memory Pressure Handling
```python
from sqrtspace_spacetime.memory import MemoryMonitor, LoggingHandler
# Monitor memory pressure
monitor = MemoryMonitor()
monitor.add_handler(LoggingHandler())
# Your arrays automatically respond to memory pressure
array = SpaceTimeArray()
# Arrays spill to disk when memory is low
```
### Configuration
```python
from sqrtspace_spacetime import SpaceTimeConfig
# Global configuration
SpaceTimeConfig.set_defaults(
memory_limit=2 * 1024**3, # 2GB
chunk_strategy='sqrt_n',
compression='gzip',
external_storage_path='/fast/ssd/temp'
)
```
### Parallel Processing
```python
from sqrtspace_spacetime.batch import BatchProcessor
processor = BatchProcessor(
memory_threshold=0.8,
checkpoint_enabled=True
)
# Process in memory-efficient batches
result = processor.process(
huge_list,
lambda batch: [transform(item) for item in batch]
)
print(f"Processed {result.get_success_count()} items")
```
## Real-World Examples
### Processing Large CSV Files
```python
from sqrtspace_spacetime import Stream
from sqrtspace_spacetime.profiler import profile_memory
@profile_memory(threshold_mb=500)
def analyze_sales_data(filename):
# Stream process to stay under memory limit
return Stream.from_csv(filename) \
.filter(lambda row: row['status'] == 'completed') \
.map(lambda row: {
'product': row['product_id'],
'revenue': float(row['price']) * int(row['quantity'])
}) \
.group_by(lambda row: row['product']) \
.sort(key=lambda group: sum(r['revenue'] for r in group[1]), reverse=True) \
.take(10) \
.collect()
top_products = analyze_sales_data('sales_2023.csv')
```
### Training Large Neural Networks
```python
from sqrtspace_spacetime.ml import MLMemoryOptimizer, GradientCheckpointer
import torch.nn as nn
# Memory-efficient training
def train_large_model(model, train_loader, epochs=10):
# Analyze memory requirements
optimizer = MLMemoryOptimizer()
profile = optimizer.analyze_model(model, input_shape=(3, 224, 224), batch_size=32)
# Get optimization plan
plan = optimizer.optimize(profile, target_batch_size=128)
# Apply gradient checkpointing
checkpointer = GradientCheckpointer()
model = checkpointer.apply_checkpointing(model, plan.checkpoint_layers)
# Train with optimized settings
for epoch in range(epochs):
for batch in train_loader:
# Training loop with automatic memory management
pass
```
### Data Pipeline with Checkpoints
```python
from sqrtspace_spacetime import Stream
from sqrtspace_spacetime.checkpoint import auto_checkpoint
@auto_checkpoint(total_iterations=1000000)
def process_user_events(event_file):
processed = 0
for event in Stream.from_jsonl(event_file):
# Complex processing
user_profile = enhance_profile(event)
recommendations = generate_recommendations(user_profile)
save_to_database(recommendations)
processed += 1
# Checkpoint state
yield {'processed': processed, 'last_event': event['id']}
return processed
# Automatically resumes if interrupted
total = process_user_events('events.jsonl')
```
## Performance Benchmarks
| Operation | Standard Python | SpaceTime | Memory Reduction | Time Overhead |
|-----------|----------------|-----------|------------------|---------------|
| Sort 10M integers | 400MB | 20MB | 95% | 40% |
| Process 1GB CSV | 1GB | 32MB | 97% | 20% |
| Group by on 1M rows | 200MB | 14MB | 93% | 30% |
| Neural network training | 8GB | 2GB | 75% | 15% |
## API Reference
### Collections
- `SpaceTimeArray`: Memory-efficient list with disk spillover
- `SpaceTimeDict`: Memory-efficient dictionary with LRU eviction
### Algorithms
- `external_sort()`: Sort large datasets with √n memory
- `external_groupby()`: Group large datasets with √n memory
- `external_join()`: Join large datasets efficiently
### Streaming
- `Stream`: Lazy evaluation stream processing
- `FileStream`: Stream lines from files
- `CSVStream`: Stream CSV rows
- `JSONLStream`: Stream JSON Lines
### Memory Management
- `MemoryMonitor`: Monitor memory pressure
- `MemoryPressureHandler`: Custom pressure handlers
### Checkpointing
- `@auto_checkpoint`: Automatic checkpointing decorator
- `CheckpointManager`: Manual checkpoint control
### ML Optimization
- `MLMemoryOptimizer`: Analyze and optimize models
- `GradientCheckpointer`: Apply gradient checkpointing
### Profiling
- `@profile`: Full profiling decorator
- `@profile_memory`: Memory-only profiling
- `SpaceTimeProfiler`: Programmatic profiling
## Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
## License
Apache License 2.0. See [LICENSE](LICENSE) for details.
## Citation
If you use SpaceTime in your research, please cite:
```bibtex
@software{sqrtspace_spacetime,
title = {SqrtSpace SpaceTime: Memory-Efficient Python Library},
author={Friedel Jr., David H.},
year = {2025},
url = {https://git.marketally.com/sqrtspace/sqrtspace-python}
}
```
## Links
- [Documentation](https://sqrtspace-spacetime.readthedocs.io)
- [PyPI Package](https://pypi.org/project/sqrtspace-spacetime/)
- [Repository](https://git.marketally.com/sqrtspace/sqrtspace-python)
- [Issue Tracker](https://git.marketally.com/sqrtspace/sqrtspace-python/issues)