# SqrtSpace SpaceTime Specialized Tools This directory contains specialized experimental tools and advanced utilities that complement the main SqrtSpace SpaceTime implementations. These tools explore specific use cases and provide domain-specific optimizations beyond the core framework. ## Overview These specialized tools extend the core SpaceTime framework with experimental features, domain-specific optimizers, and advanced analysis capabilities. They demonstrate cutting-edge applications of Williams' space-time tradeoffs in various computing domains. **Note:** For production-ready implementations, please use: - Python: `pip install sqrtspace-spacetime` () - .NET: `dotnet add package SqrtSpace.SpaceTime` () - PHP: `composer require sqrtspace/spacetime` () ## Quick Start ```bash # Clone the repository git clone https://git.marketally.com/sqrtspace/sqrtspace-tools.git cd sqrtspace-tools # Install dependencies pip install -r requirements.txt # Run basic tests python test_basic.py # Profile your application python profiler/example_profile.py ``` ## Specialized Tools **Note:** The core functionality (profiler, ML optimizer, auto-checkpoint) has been moved to the production packages. These specialized tools provide additional experimental features: ### 1. [Memory-Aware Query Optimizer](db_optimizer/) Database query optimizer considering memory hierarchies. ```python from db_optimizer.memory_aware_optimizer import MemoryAwareOptimizer optimizer = MemoryAwareOptimizer(conn, memory_limit=10*1024*1024) result = optimizer.optimize_query(sql) print(result.explanation) # "Changed join from nested_loop to hash_join saving 9MB" ``` **Features:** - Cost model with L3/RAM/SSD boundaries - Intelligent join algorithm selection - √n buffer sizing - Spill strategy planning ### 2. [Distributed Shuffle Optimizer](distsys/) Optimize shuffle operations in distributed frameworks. ```python from distsys.shuffle_optimizer import ShuffleOptimizer, ShuffleTask optimizer = ShuffleOptimizer(nodes) plan = optimizer.optimize_shuffle(task) print(plan.explanation) # "Using tree_aggregate with √n-height tree" ``` **Features:** - Optimal buffer sizing per node - √n-height aggregation trees - Network topology awareness - Compression selection ### 3. [Cache-Aware Data Structures](datastructures/) Data structures that adapt to memory hierarchies. ```python from datastructures import AdaptiveMap map = AdaptiveMap() # Automatically adapts # Switches: array → B-tree → hash table → external storage ``` **Features:** - Automatic implementation switching - Cache-line-aligned nodes - √n external buffers - Compressed variants ### 4. [SpaceTime Configuration Advisor](advisor/) Analyze systems and recommend optimal settings. ```python from advisor.config_advisor import ConfigAdvisor advisor = ConfigAdvisor() recommendations = advisor.analyze_system(workload_type='database') print(recommendations.explanation) ``` ### 5. [Visual SpaceTime Explorer](explorer/) Interactive visualization of space-time tradeoffs. ```python from explorer.spacetime_explorer import SpaceTimeExplorer explorer = SpaceTimeExplorer() explorer.visualize_tradeoffs(algorithm='sorting', n=1000000) ``` ### 6. [Benchmark Suite](benchmarks/) Standardized benchmarks for measuring tradeoffs. ```python from benchmarks.spacetime_benchmarks import run_benchmark results = run_benchmark('external_sort', sizes=[1e6, 1e7, 1e8]) ``` ### 7. [Compiler Plugin](compiler/) Compile-time optimization of space-time tradeoffs. ```python from compiler.spacetime_compiler import optimize_code optimized = optimize_code(source_code) print(optimized.transformations) ``` ## Core Components ### [SpaceTimeCore](core/spacetime_core.py) Shared foundation providing: - Memory hierarchy modeling - √n interval calculation - Strategy comparison framework - Resource-aware scheduling ## Real-World Impact These optimizations appear throughout modern computing: - **2+ billion smartphones**: SQLite uses √n buffer pool sizing - **ChatGPT/Claude**: Flash Attention trades compute for memory - **Google/Meta**: MapReduce frameworks use external sorting - **Video games**: A* pathfinding with memory constraints - **Embedded systems**: Severe memory limitations require tradeoffs ## Example Results From our experiments: ### Checkpointed Sorting - **Before**: O(n) memory, baseline speed - **After**: O(√n) memory, 10-50% slower - **Savings**: 90-99% memory reduction ### LLM Attention - **Full KV-cache**: 197 tokens/sec, O(n) memory - **Flash Attention**: 1,349 tokens/sec, O(√n) memory - **Result**: 6.8× faster with less memory! ### Database Buffer Pool - **O(n) cache**: 4.5 queries/sec - **O(√n) cache**: 4.3 queries/sec - **Savings**: 94% memory, 4% slowdown ## Installation ### Basic Installation ```bash pip install numpy matplotlib psutil ``` ### Full Installation ```bash pip install -r requirements.txt ``` ## Project Structure ``` sqrtspace-tools/ ├── core/ # Shared optimization engine │ └── spacetime_core.py # Memory hierarchy, √n calculator ├── advisor/ # Configuration advisor ├── benchmarks/ # Performance benchmarks ├── compiler/ # Compiler optimizations ├── datastructures/ # Adaptive data structures ├── db_optimizer/ # Database optimizations ├── distsys/ # Distributed systems ├── explorer/ # Visualization tools └── requirements.txt # Python dependencies ``` ## Key Insights 1. **Williams' bound is everywhere**: The √n pattern appears in databases, ML, algorithms, and systems 2. **Massive constant factors**: Theory says √n is optimal, but 100-10,000× slowdowns are common 3. **Memory hierarchies matter**: L1→L2→L3→RAM→Disk transitions create performance cliffs 4. **Modern hardware changes the game**: Fast SSDs and memory bandwidth limits alter tradeoffs 5. **Cache-aware beats theoretically optimal**: Locality often trumps algorithmic complexity ## Contributing We welcome contributions! Areas of focus: 1. **Tool Development**: Help implement the remaining tools 2. **Integration**: Add support for more frameworks (PyTorch, TensorFlow, Spark) 3. **Documentation**: Improve examples and tutorials 4. **Research**: Explore new space-time tradeoff patterns 5. **Testing**: Add comprehensive test suites ## Citation If you use these tools in research, please cite: ```bibtex @software{sqrtspace_tools, title = {SqrtSpace Tools: Space-Time Optimization Suite}, author={Friedel Jr., David H.}, year = {2025}, url = {https://git.marketally.com/sqrtspace/sqrtspace-tools} } ``` ## License Apache 2.0 - See [LICENSE](LICENSE) for details. ## Acknowledgments Based on theoretical work by Williams (STOC 2025) and inspired by real-world systems at Anthropic, Google, Meta, OpenAI, and others. --- *"Making theoretical computer science practical, one tool at a time."*