# The Ubiquity of Space-Time Tradeoffs: Experiments & Implementation This repository contains the experimental code, case studies, and interactive dashboard accompanying the paper "The Ubiquity of Space-Time Simulation in Modern Computing: From Theory to Practice". **Paper Repository**: [git.marketally.com/sqrtspace/sqrtspace-paper](https://git.marketally.com/sqrtspace/sqrtspace-paper) **Interactive Dashboard**: Run locally with `streamlit run dashboard/app.py` **Based on**: Ryan Williams' 2025 result that TIME[t] ⊆ SPACE[√(t log t)] ## Overview This project demonstrates how theoretical space-time tradeoffs manifest in real-world systems through: - **Controlled experiments** validating the √n relationship - **Interactive visualizations** exploring memory hierarchies - **Practical implementations** in production-ready libraries ## Key Findings - Theory predicts √n slowdown, practice shows 100-10,000× due to constant factors - Memory hierarchy (L1/L2/L3/RAM/Disk) dominates performance - Cache-friendly algorithms can be faster with less memory - The √n pattern appears in our experimental implementations ## Experiments ### 1. Maze Solver (C#) **Location:** `experiments/maze_solver/` Demonstrates graph traversal with memory constraints: - BFS: O(n) memory, 1ms runtime - Memory-Limited DFS: O(√n) memory, 5ms runtime (5× slower) ```bash cd experiments/maze_solver dotnet run ``` ### 2. Checkpointed Sorting (Python) **Location:** `experiments/checkpointed_sorting/` Shows massive I/O penalties when reducing memory: - In-memory: O(n) space, 0.0001s - Checkpointed: O(√n) space, 0.268s (2,680× slower!) ```bash cd experiments/checkpointed_sorting python checkpointed_sort.py ``` ### 3. Stream Processing (Python) **Location:** `experiments/stream_processing/` Reveals when less memory is actually faster: - Full history: O(n) memory, 0.33s - Sliding window: O(w) memory, 0.011s (30× faster!) ```bash cd experiments/stream_processing python sliding_window.py ``` ### 4. Real LLM Inference with Ollama (Python) **Location:** `experiments/llm_ollama/` Demonstrates space-time tradeoffs with actual language models: - Context chunking: 18.3× slowdown for √n chunks - Streaming generation: 6% overhead vs full generation - Checkpointing: 7.6% overhead for fault tolerance ```bash cd experiments/llm_ollama python ollama_spacetime_experiment.py ``` ## Quick Start ### Prerequisites - Python 3.8+ (for Python experiments) - .NET Core SDK (for C# maze solver) - Ollama (optional, for real LLM experiments) - 2GB free memory for experiments ### Installation ```bash # Clone repository git clone https://git.marketally.com/sqrtspace/sqrtspace-experiments.git cd Ubiquity # Install Python dependencies pip install -r requirements.txt # Run the dashboard streamlit run dashboard/app.py ``` ### Running All Experiments ```bash # Run each experiment cd experiments/maze_solver && dotnet run && cd ../.. cd experiments/checkpointed_sorting && python checkpointed_sort.py && cd ../.. cd experiments/stream_processing && python sliding_window.py && cd ../.. cd experiments/database_buffer_pool && python sqlite_heavy_experiment.py && cd ../.. cd experiments/llm_kv_cache && python llm_kv_cache_experiment.py && cd ../.. cd experiments/llm_ollama && python ollama_spacetime_experiment.py && cd ../.. # Requires Ollama ``` ## Repository Structure ``` ├── experiments/ # Core experiments demonstrating tradeoffs │ ├── maze_solver/ # C# graph traversal with memory limits │ ├── checkpointed_sorting/ # Python external sorting with O(√n) space │ ├── stream_processing/ # Python sliding window vs full storage │ ├── database_buffer_pool/ # SQLite experiments with different cache sizes │ ├── llm_kv_cache/ # Simulated LLM attention mechanism tradeoffs │ ├── llm_ollama/ # Real LLM experiments with Ollama models │ └── measurement_framework.py # Shared profiling and analysis tools ├── dashboard/ # Interactive Streamlit visualizations │ ├── app.py # 6-page interactive dashboard │ └── requirements.txt # Dashboard dependencies └── FINDINGS.md # Verified experimental results with statistical analysis ``` ## Interactive Dashboard The dashboard (`dashboard/app.py`) includes: 1. **Space-Time Calculator**: Find optimal configurations 2. **Memory Hierarchy Simulator**: Visualize cache effects 3. **Algorithm Comparisons**: See tradeoffs in action 4. **LLM Optimizations**: Flash Attention demonstrations 5. **Implementation Examples**: Library demonstrations ## Measurement Framework `experiments/measurement_framework.py` provides: - Continuous memory monitoring (10ms intervals) - Cache-aware benchmarking - Statistical analysis across multiple runs - Automated visualization generation ## Extending the Work ### Adding New Experiments 1. Create folder in `experiments/` 2. Implement space-time tradeoff variants 3. Use `measurement_framework.py` for profiling 4. Document findings in experiment README ## 📚 Citation If you use this code or build upon our work: ```bibtex @article{friedel2025ubiquity, title={The Ubiquity of Space-Time Simulation in Modern Computing: From Theory to Practice}, author={Friedel Jr., David H.}, journal={arXiv preprint arXiv:25XX.XXXXX}, year={2025} } ``` ## Contact **Author**: David H. Friedel Jr. **Organization**: MarketAlly LLC (USA) & MarketAlly Pte. Ltd. (Singapore) **Email**: dfriedel@marketally.ai ## License This work is licensed under CC BY 4.0. You may share and adapt the material with proper attribution. ## Acknowledgments - Ryan Williams for the theoretical foundation - The authors of Flash Attention, PostgreSQL, and Apache Spark - Early-stage R&D support from MarketAlly LLC and MarketAlly Pte. Ltd.