sqrtspace-dotnet/samples/SampleWebApi/Controllers/AnalyticsController.cs
2025-07-20 03:41:39 -04:00

159 lines
5.7 KiB
C#

using Microsoft.AspNetCore.Mvc;
using SqrtSpace.SpaceTime.AspNetCore;
using SqrtSpace.SpaceTime.Core;
using SampleWebApi.Models;
using SampleWebApi.Services;
namespace SampleWebApi.Controllers;
[ApiController]
[Route("api/[controller]")]
public class AnalyticsController : ControllerBase
{
private readonly IOrderAnalyticsService _analyticsService;
private readonly ILogger<AnalyticsController> _logger;
public AnalyticsController(IOrderAnalyticsService analyticsService, ILogger<AnalyticsController> logger)
{
_analyticsService = analyticsService;
_logger = logger;
}
/// <summary>
/// Calculate revenue by category using memory-efficient aggregation
/// </summary>
/// <remarks>
/// This endpoint demonstrates using external grouping for large datasets.
/// When processing millions of orders, it automatically uses disk-based
/// aggregation to stay within memory limits.
/// </remarks>
[HttpGet("revenue-by-category")]
public async Task<ActionResult<IEnumerable<CategoryRevenue>>> GetRevenueByCategory(
[FromQuery] DateTime? startDate = null,
[FromQuery] DateTime? endDate = null)
{
var result = await _analyticsService.GetRevenueByCategoryAsync(startDate, endDate);
return Ok(result);
}
/// <summary>
/// Get top customers using external sorting
/// </summary>
/// <remarks>
/// This endpoint finds top customers by order value using external sorting.
/// Even with millions of customers, it maintains O(√n) memory usage.
/// </remarks>
[HttpGet("top-customers")]
public async Task<ActionResult<IEnumerable<CustomerSummary>>> GetTopCustomers(
[FromQuery] int top = 100,
[FromQuery] DateTime? since = null)
{
if (top > 1000)
{
return BadRequest("Cannot retrieve more than 1000 customers at once");
}
var customers = await _analyticsService.GetTopCustomersAsync(top, since);
return Ok(customers);
}
/// <summary>
/// Stream real-time order analytics
/// </summary>
/// <remarks>
/// This endpoint streams analytics data in real-time using Server-Sent Events (SSE).
/// It demonstrates memory-efficient streaming of continuous data.
/// </remarks>
[HttpGet("real-time/orders")]
[SpaceTimeStreaming]
public async Task StreamOrderAnalytics(CancellationToken cancellationToken)
{
Response.ContentType = "text/event-stream";
Response.Headers.Append("Cache-Control", "no-cache");
Response.Headers.Append("X-Accel-Buffering", "no");
await foreach (var analytics in _analyticsService.StreamRealTimeAnalyticsAsync(cancellationToken))
{
var data = System.Text.Json.JsonSerializer.Serialize(analytics);
await Response.WriteAsync($"data: {data}\n\n", cancellationToken);
await Response.Body.FlushAsync(cancellationToken);
// Small delay to simulate real-time updates
await Task.Delay(1000, cancellationToken);
}
}
/// <summary>
/// Generate complex report with checkpointing
/// </summary>
/// <remarks>
/// This endpoint generates a complex report that may take a long time.
/// It uses checkpointing to allow resuming if the operation is interrupted.
/// The report includes multiple aggregations and can handle billions of records.
/// </remarks>
[HttpPost("reports/generate")]
[EnableCheckpoint(Strategy = CheckpointStrategy.SqrtN)]
public async Task<ActionResult<ReportResult>> GenerateReport(
[FromBody] ReportRequest request,
[FromHeader(Name = "X-Report-Id")] string? reportId = null)
{
reportId ??= Guid.NewGuid().ToString();
var checkpoint = HttpContext.Features.Get<ICheckpointFeature>();
ReportState? previousState = null;
if (checkpoint != null)
{
previousState = await checkpoint.CheckpointManager.RestoreLatestCheckpointAsync<ReportState>();
if (previousState != null)
{
_logger.LogInformation("Resuming report generation from checkpoint. Progress: {progress}%",
previousState.ProgressPercent);
}
}
var result = await _analyticsService.GenerateComplexReportAsync(
request,
reportId,
previousState,
checkpoint?.CheckpointManager);
return Ok(result);
}
/// <summary>
/// Analyze order patterns using machine learning with batched processing
/// </summary>
/// <remarks>
/// This endpoint demonstrates processing large datasets for ML analysis
/// using √n batching to maintain memory efficiency while computing features.
/// </remarks>
[HttpPost("analyze-patterns")]
public async Task<ActionResult<PatternAnalysisResult>> AnalyzeOrderPatterns(
[FromBody] PatternAnalysisRequest request)
{
if (request.MaxOrdersToAnalyze > 1_000_000)
{
return BadRequest("Cannot analyze more than 1 million orders in a single request");
}
var result = await _analyticsService.AnalyzeOrderPatternsAsync(request);
return Ok(result);
}
/// <summary>
/// Get memory usage statistics for the analytics operations
/// </summary>
/// <remarks>
/// This endpoint provides insights into how SpaceTime is managing memory
/// for analytics operations, useful for monitoring and optimization.
/// </remarks>
[HttpGet("memory-stats")]
public ActionResult<MemoryStatistics> GetMemoryStatistics()
{
var stats = _analyticsService.GetMemoryStatistics();
return Ok(stats);
}
}